Noll, W. & KIRCHER, H. (1951). Neues Jb. Miner. Mh. 10, 219.

NYE, J. F. (1949). Proc. Roy. Soc. A, 200, 47.

- OSTER, G. & RILEY, D. P. (1952). Acta Cryst. 5, 272.
- PATERSON, M. S. (1954). Acta Metallurg. 2, 823.
- PAULING, L. (1930). Proc. Nat. Acad. Sci., Wash., 16, 578.
- SNEDDON, I. N. (1956). Special Functions of Mathematical Physics and Chemistry. p. 93. London: Oliver and Boyd.
- STUART, I. M. (1959). Acta Cryst. 12. 71.
- TAGGART, M. S., MILLIGAN, W. O. & STUDER, H. P. (1954). Third National Clay Minerals Conference, Houston, Texas.
- TOMLIN, S. G. & ERICSSON, L. G. (1960). Acta Cryst. 13, 395.
- WASER, J. (1955). Acta Cryst. 8, 142.
- WHITTAKER, E. J. W. (1953). Acta Cryst. 6, 747.
- WHITTAKER, E. J. W. (1954). Acta Cryst. 7, 827.

Acta Cryst. (1965). 18, 467

Kristall- und Molekülstruktur des syn-Methyldiazotatkaliums CH₃N₂OK

VON R. HUBER, R. LANGER UND W. HOPPE

Abteilung für Röntgenstrukturforschung am Max–Planck-Institut für Eiweiss- und Lederforschung, München und Physikalisch-Chemisches Institut der Technischen Hochschule, München, Abteilung für Strukturforschung, Deutschland

(Eingegangen am 25. März 1964 und wiedereingereicht am 30. April 1964)

The crystal structure of potassium syn-methyldiazotate has been determined by two-dimensional heavy-atom methods and refined by three-dimensional Fourier- and least-squares computations. The final R index is 8.4% for 1230 reflexions. The space group is C2/c with unit-cell dimensions a = 12.49, b = 9.97, c = 6.61, $\beta = 81.5^{\circ}$. There is one molecule per asymmetric unit. The methyl hydrogen atoms have been located.

The molecule is found in the *cis*-diazotate form and is planar within the limits of the analysis. The N-O bond length 1.306 Å is unusually short.

Einleitung

In einer früheren Arbeit (Müller, Hoppe, Hagenmaier, Haiss, Huber, Rundel & Suhr, 1963) haben wir kurz über Ergebnisse einer zweidimensionalen Röntgenkristallstrukturanalyse berichtet, welche die Bestimmung der Molekülstruktur des *syn*-Methyldiazotatkaliums zum Ziele hatte.

In der vorliegenden Arbeit werden die Röntgenuntersuchungen, die zuerst mit zweidimensionalen, später auch mit dreidimensionalen Methoden durchgeführt wurden, im einzelnen beschrieben.

Experimentelles

Das syn-Methyldiazotatkalium kristallisiert aus flüssigem Ammoniak in dünnen Nadeln, aus Dimethylsulfoxyd in Prismen von ca. $\frac{1}{2}$ mm Kantenlänge. Die Kristalle waren uns von E. Müller zur Verfügung gestellt worden, wofür wir auch an dieser Stelle unseren besten Dank aussprechen.

Die ausserordentlich luft- und feuchtigkeitsempfindlichen Kristalle wurden unter trockenem Stickstoff in Markkapillaren eingeschmolzen. Nach Präzessionsaufnahmen ergaben sich die Gitterkonstanten zu

$$a = 12,49 \pm 0,02, \ b = 9,97 \pm 0,02, \ c = 6,61 \pm 0,02 \text{ Å}$$

 $\beta = 81^{\circ} 30' + 5'.$

Entsprechend der hohen Genauigkeit der Parameterbestimmung wurden die Gitterkonstanten mit besonderer Sorgfalt gemessen (Aufbelichtung eines NaCl-Einkristalldiagrammes auf den gleichen Präzessionsfilm). Die Dichte ergab sich nach der Schwebemethode (Mischungen von getrocknetem Benzol und Methylenjodid unter Stickstoff) zu $\varrho = 1,60$ g.cm⁻³ (theoretische Dichte bei 8 Formeleinheiten $\rho = 1,61$ g.cm⁻³).

Auf Grund der Auslöschungen (hkl) für h+k=2n+1, (h0l) für l=2n+1, kommen die Raumgruppen Cc (azentrisch, vierzählige Punktlage) und C2/c (zentrosymmetrisch, achtzählige Punktlage) in Frage. Im Laufe der Analyse stellte sich die zentrosymmetrische Raumgruppe als die richtige heraus.

Punktlagen:
$$(0, 0, 0; \frac{1}{2}, \frac{1}{2}, 0) + x, y, z; \bar{x}, \bar{y}, \bar{z}$$

 $\bar{x}, y, \frac{1}{2} - z; x, \bar{y}, \frac{1}{2} + z.$

Für die Intensitätsaufnahmen wurden Kriställchen mit den Kantenlängen 0,5, 0,2, 0,2 mm verwendet, deren Absorption bei Verwendung von Mo Ka-Strahlung ($\mu = 11,0$ cm⁻¹) vernachlässigbar gering war. Die Intensitäten wurden photographisch vermessen (Präzessionsaufnahmen und Weissenberg-Mehrfachfilm-Aufnahmen mit Zwischenlage von 15 μ starken Kupferfolien, Photometrierung mit einem an unserem Institut entwickelten integrierenden Photometer). Da der Kristall einen hohen Temperaturfaktor besitzt, waren die Reflexe nur bis ca. $\sin \theta / \lambda = 0,65$ Å⁻¹ vermessbar. Es wurden 1230 unabhängige Strukturfaktoren bestimmt, die zum grössten Teil in vier äquivalenten Reflexen gemessen wurden (mittlere Abweichung der vier Messungen bei der Photometrierung ca. 8%).

Nach Bestimmung der Schweratomlagen aus den Patterson-Projektionen (längs [100], [010] und [001]) wurden Elektronendichte-Projektionen mit den aus den Kalium-Lagen ermittelten Phasen gerechnet. Da jedoch das Kalium nahezu spezielle x, y-Parameter hat $(x \sim \frac{1}{8}, y \sim \frac{1}{8})$, war sein Beitrag für gewisse Gruppen von Strukturfaktoren sehr gering. Es empfiehlt sich, in solchen Fällen das Prinzip der sog. Überlappungssynthese anzuwenden: Man berechnet Fourier-Synthesen nur mit den durch ihren Schweratomanteil in ihrem Vorzeichen gut bestimmten Reflexen und erhält Strukturen, in denen die Moleküle vervielfacht auftreten. Die Reflexe hk0 fehlen für h+k=2n+1. Wegen der speziellen Lage des Kaliums ist dessen Beitrag zu den Reflexen mit h=2n gering, wenn nicht h, k=4n gilt. Lässt man für die Berechnung der Elektronendichteprojektion längs [001] die Reflexe mit h=2n heraus, so erhält man eine Elektronendichteverteilung mit halber a-Gitterperiode, in der dem normalen Bild der Struktur ein um a/2 verschobenes Negativ der Struktur (negative Elektronendichte) überlagert ist.

Entsprechend werden die Reflexe 0kl mit k/2+l=2n+1 nicht vom schweren Atom beeinflusst. Eine Fourier-Synthese mit den Interferenzen k/2+l=2nliefert ein analoges verdoppeltes Abbild der Struktur, in welchem dem normalen Bild der Struktur ein um b/4+c/2 verschobenes positives Bild überlagert ist. Aus beiden Überlappungssynthesen lassen sich Anhaltspunkte für die Lage der Leichtatome gewinnen. Mit verallgemeinerten Patterson-Synthesen und verallgemeinerten Fourier-Synthesen wurden die Schlüsse zusätzlich überprüft und durch zwei- und dreidimensionale Fourier-Synthesen schliesslich bestätigt.

Verfeinerung

Da die Struktur in den Projektionen recht gut aufgelöst ist, wurde zunächst eine zweidimensionale Verfeinerung mit Differenz-Elektronendichte-Synthesen und mit der Methode der kleinsten Quadrate vorgenommen, deren Ergebnisse als Ausgang für die nachfolgende dreidimensionale Verfeinerung dienen sollte. Die R_1 -Werte für die c, b, a-Projektionen waren 12,0, 9,0, 10,2% (individuelle isotrope Temperaturfaktoren). Eine Verfeinerung mit allen 1230 Strukturfaktoren (Wichtung der Werte: beobachtete Strukturfaktoren: Gewicht=1; nicht beobachtete, innerhalb des Gebietes sin $\theta/\lambda < 0.65$ Å⁻¹ liegende Strukturfaktoren: Gewicht = $\frac{1}{4}$; eingegebener Wert: die Hälfte des kleinsten beobachteten Strukturfaktors) verbesserte den R_1 -Wert von 27% auf 12,2% (individuelle isotrope Temperaturfaktoren). In diesem Stadium

wurde eine dreidimensionale Differenz-Fourier-Synthese berechnet, um einmal Näherungswerte für die anisotropen Schwingungen der Atome zu erhalten und um andererseits die Wasserstoffatome zu finden.

Im Prinzip lassen sich bei einer so weit vorgeschrittenen Verfeinerung die anisotropen, thermischen Parameter unmittelbar mit einem Kleinste-Quadrate-Programm automatisch bestimmen. Sie können aber natürlich auch unmittelbar aus der Differenz-Fourier-Synthese abgeleitet werden; hierzu geeignete algebraische Methoden haben Cochran (1951) und Cruickshank (1956) angegeben. Zur Kontrolle der mit der Methode der kleinsten Quadrate berechneten Werte haben wir die Konstanten der anisotropen Schwingun-

Tabelle	1.	Atompar	cameter	aus	der	Kleinste-
		Quadrate	-Verfei	neru	ng	

 σ

			Mittl. Fehler
N(1)	$egin{array}{c} x \ y \ z \end{array}$	$0.15595 \\ 0.28068 \\ -0.22847$	0·00042 0·00053 0·00069
	$\begin{array}{c} \beta_{11} \\ \beta_{22} \\ \beta_{33} \\ \beta_{12} \\ \beta_{13} \\ \beta_{23} \end{array}$	$\begin{array}{c} 0.00543\\ 0.00739\\ 0.01132\\ -0.00019\\ 0.00083\\ 0.00171\end{array}$	0.00036 0.00056 0.00098 0.00037 0.00046 0.00059
N(2)	$egin{array}{c} x \ y \ z \end{array}$	0.13919 0.16349 -0.16610	0·00037 0·00051 0·00064
	$\begin{array}{c} \beta_{11} \\ \beta_{22} \\ \beta_{33} \\ \beta_{12} \\ \beta_{13} \\ \beta_{23} \end{array}$	$\begin{array}{c} 0.00399\\ 0.00846\\ 0.00908\\ 0.00009\\ - 0.00060\\ - 0.00017\end{array}$	0.00029 0.00060 0.00086 0.00033 0.00040 0.00056
0	$egin{array}{c} x \ y \ z \end{array}$	0·09060 0·14199 0·01991	0·00032 0·00046 0·00052
	$\begin{array}{c} \beta_{11} \\ \beta_{22} \\ \beta_{33} \\ \beta_{12} \\ \beta_{13} \\ \beta_{23} \end{array}$	$\begin{array}{c} 0.00527\\ 0.00915\\ 0.00839\\ -0.00084\\ 0.00043\\ 0.00167\end{array}$	0.00028 0.00052 0.00073 0.00032 0.00035 0.00051
С	x y z	0.11941 0.38816 -0.08010	0·00065 0·00074 0·00110
	$ \begin{array}{c} \beta_{11} \\ \beta_{22} \\ \beta_{33} \\ \beta_{12} \\ \beta_{13} \\ \beta_{23} \end{array} $	$\begin{array}{c} 0.00752 \\ 0.00858 \\ 0.02378 \\ - 0.00006 \\ - 0.00049 \\ 0.00010 \end{array}$	0.00054 0.00075 0.00170 0.00060 0.00077 0.00106
K	$egin{array}{c} x \ y \ z \end{array}$	0.12956 - 0.12392 - 0.09767	0·00009 0·00013 0·00016
	$\substack{\substack{\beta_{11}\\\beta_{22}\\\beta_{33}\\\beta_{12}\\\beta_{13}\\\beta_{$	$\begin{array}{c} 0.00378\\ 0.00674\\ 0.00655\\ 0.00087\\ -0.00060\\ 0.00002\end{array}$	0.00006 0.00012 0.00018 0.00009 0.00008
	ρ_{23}	-0.00008	0.00012

gen auch unmittelbar aus der Differenz-Fourier-Synthese bestimmt, wobei wir eine graphische Methode anwandten, die im Grundgedanken mit den von Cochran und Cruickshank angegebenen Verfahren verwandt ist. Die Rechnung zeigte Ergebnisse, die mit den Werten (Tabelle 1) aus einer späteren Kleinste-Quadrate-Verfeinerung zum grössten Teil innerhalb deren Fehlergrenzen übereinstimmten.

Die Differenz-Fourier-Synthese lieferte auch die Lage der Wasserstoffe der Methylgruppe, die sich tetraedrisch mit Abständen von 0,9-1,05 Å um das Kohlenstoffatom anordnen. In einem neuen Kleinste-Quadrate-Zyklus wurden nun die Wasserstoffatome mit eingegeben, und sowohl Lageparameter wie anisotrope Temperaturfaktoren aller Atome mit Ausnahme der Wasserstoffatome variiert. Bereits nach zwei Zyklen waren die Parameterverschiebungen sehr klein geworden. Der R_1 -Wert betrug 8,4%. Die erhaltenen Atomparameter sind in Tabelle 1 aufgeführt.

Zum Abschluss berechneten wir noch eine zweite Differenz-Fourier-Synthese mit Berücksichtigung der anisotropen Temperaturbewegung, aber ohne Eingabe der Wasserstoffatome, um ein von der Temperaturbewegung der Nachbaratome ungestörtes Bild der Wasserstoffatome zu erhalten. Die Höhen der drei Maxima um das Kohlenstoffatom waren:

H(1) 0,78 e.Å⁻³ H(2) 0,91 H(3) 0,68

Tabelle 2 gibt die Lageparameter und die Bindungsabstände und -winkel der aus dieser Differenz-Fourier-Synthese bestimmten Wasserstoffatome wieder. Die Differenz-Synthese enthält ein viertes Maximum von 0,67 e.Å⁻³, das nicht in der Nähe eines Atomes liegt, und ein Minimum von -1,3 e.Å⁻³ in unmittelbarer Nähe des Kaliums.

Tabelle 2. Ortsparameter der Wasserstoffatome aus der Differenz-Fourier-Synthese

	x	y	z
H(1)	0.100	0.346	0.022
H(2)	0.046	0.392	-0.058
H(3)	0.154	0.396	0.033
	CH(1)	0·86 Å	
	$\mathbf{CH}(2)$	1.04	
	CH(3)	0.93	
	∢ N(1)CH(1)	101	0
	$\stackrel{\frown}{\neq}$ N(1)CH(2)	104	
	\neq N(1)CH(3)	117	
А	bstände von de	r Moleküleb	ene
	H(1)	0·09 Å	
	$\mathbf{H}(2)$	-0.80	
	H(3)	0.75	

Fig. 1 zeigt zweidimensionale Schnitte durch die Atome parallel zur x, y-Ebene. Der Ausläufer der Elektronendichte beim Kohlenstoffatom ist dem Einfluss des Wasserstoffatoms H(2) zuzuschreiben. Fig. 2 zeigt Schnitte durch die zweite Differenz-Fourier-Synthese in der Höhe der Wasserstoffatome, parallel zur x, y-Ebene.

Fig. 1. Dreidimensionale Fouriersynthese. Schnitte durch die Atome parallel zur x, y-Ebene. Höhenlinien von 1 e.Å⁻³ an alle 1 e.Å⁻³; beim Kalium alle 5 e.Å⁻³.

Fig. 2. Dreidimensionale Differenz-Fourier-Synthese. Schnitte durch die Wasserstoffatome parallel zur x, y-Ebene. Höhenlinien von 0.5 e.Å⁻³ an alle 0.05 e.Å⁻³.

Diskussion

Fig. 3 vermittelt ein schematisches Bild der Struktur, projiziert entlang *a*. Die Struktur ist salzartig und bildet ein Schichtgitter. Die Schichten liegen ungefähr parallel zur Ebene (602). Wie Fig. 3 deutlich zeigt, bilden die Kationen und die Anionen verzerrte, flächenzentrierte Gitter. Die ganze Struktur lässt sich als eine verzerrte Natriumchloridstruktur auffassen. Es ist bemerkenswert, dass die Abstände des positiv geladenen Kaliums zu den drei Atomen der Diazotatgruppe von der gleichen Grössenordnung sind. Man wird daher vermuten dürfen, dass diese drei Atome die Ladung tragen. Das Molekülanion hat die Konstitution des Hantzschschen Vorschlages für das syn-Diazotat (cis-Konfiguration). Das Anion ist sehr genau eben. Die durch die vier Atome N(1), N(2), O, C des Anions gelegte beste Ebene hat die Gleichung:

0,9461x' - 0,0135y' + 0,3237z' - 1,1140 = 0.

Tabelle 3. Atomabstände und Bindungswinkel

1.246 ± 0.008 Å 1.477 ± 0.010
1.306 ± 0.007
2.208 ± 0.007 2.315 ± 0.010
$2{\cdot}554\pm0{\cdot}010$
$116 \cdot 2 \pm 0 \cdot 5 \circ 119 \cdot 8 \pm 0 \cdot 5$

Nächste Kalium-Kalium-Abstände 4.057; 4.125; 4.127; 4.265 Å

Nächste Nachb	arn des Kaliums
ко	$2 \cdot 650$ Å
	2.728
	2.785
K N(1)	2.914
. ,	2.957
K N(2)	2.900
	9,901

 Tabelle 4. Hauptachsen der Schwingungsellipsoide und ihre Orientierungen gegen ein kartesisches Koordinatensystem x'', y'', z''

(x'' parallel N(1)N(2); z'' senkrecht auf x'', in der Molekülebene und mit N(2)O einen spitzen Winkel einschliessend, y'' senkrecht auf x'' und z'')

	$\overline{u_{H}^{2}}(\mathrm{\AA}^{2})$	Winkel mit $x^{\prime\prime}$	Winkel mit $y^{\prime\prime}$	Winkel mit z″
N(1)	0.0205	(51.48)	87.52	38.63)
. /	0.0388	(39.85	80.87	128·38)
	0.0470	(98.67	9.46	86.24)
N(2)	0.0196	(72.08	73.10	25.05)
. ,	0.0312	(86.13)	163.03	73.50)
	0.0427	(161-63	88.49	71·69)
0	0.0160	(58.02)	82.50	33.06)
	0.0414	(62.57)	150.92	98.91)
	0.0493	$(135 \cdot 41)$	117.91	58.46)
С	0.0437	$(165 \cdot 42)$	92.04	75.57)
	0.0482	(104.56)	84.92	164.54)
	0.0625	(90.70	5.48	84.57)
к	0.0142	(71.59	69.61	28.05)
	0.0258	(114.77)	141.57	62.67)
	0.0375	(148.36	59.02	84.18)

Die senkrechten Abstände der einzelnen Atome von dieser Ebene betragen:

N(1)	0,0035 Å
N(2)	-0,0038
0	0,0019
С	-0,0017

und sind im Rahmen der Genauigkeit der Strukturanalyse nicht signifikant.

Fig. 3. Schematisches Strukturbild.

Fig. 4 zeigt schematisch das Molekülmodell des Anions. Es fällt besonders auf, dass ein Wasserstoffatom der Methylgruppe in der Molekülebene liegt und hierbei gegenüber dem N(2) eine *cis*-Stellung einnimmt. In dieser Stellung beträgt sein Abstand von dem Sauerstoffatom nur 2,03 Å. Er liegt damit beträchtlich unter dem normalen van der Waals-Abstand von 2,7 Å. Nun ist zwar seit längerem bekannt, dass in vielen Verbindungen eine 'frei drehbare' Methylgruppe definierte Stellungen einnehmen kann, doch kann die hier gefundene Anordnung zu keinem bisher diskutierten Fall in Analogie gesetzt werden. Sie lässt sich formal als eine innermolekulare Wasserstoffbindung zwischen C und O beschreiben (Abstand zwischen C und O: 2,554 Å).

Wir hatten in unserer früheren Arbeit darauf hingewiesen, dass die aus der zweidimensionalen Verfeinerung gewonnenen Abstände eine Mesomerie zwischen den Grenzformeln eines Diazotats und eines Nitrosamines wahrscheinlich machen:

Die sehr viel genaueren Werte der dreidimensionalen Verfeinerung zeigen nun, dass der Abstand zwischen N und O wiederum auf eine mesomere Struktur hindeutet. Er ist gegenüber der Stickstoff-Sauerstoff-Einfachbindung (1,39-1,41 Å) mit 1,306 Å

R. HUBER, R. LANGER UND W. HOPPE

Tabelle 5. Strukturfaktoren

h k	F _o F	e h k	F.	Р _с	h k	F	F.	h k	F.	F _c	h k	P	Fc	h k	P _o	Fc	h k	۴.	F.	
$1 2 4 6 8 \\ 0 0 0 1 1 1 5 7 9 1 1 2 2 2 2 2 2 2 3 3 3$	$\begin{array}{c} & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\$	5 5 5 5 5 5 5 5 5 5 5 5 5 5	$\begin{array}{c} & & & & & & & & & & & & & & & & & & &$	$ \begin{array}{c} 21 \ 45.6 \ 852 \ 85.8 \ 95.8$	$ \begin{array}{c} 800 \\ 0 \\ 10112 \\ 1 \\ 111 \\ 135 \\ 557 \\ 799 \\ 1112 \\ 2244666 \\ 881 \\ 1135 \\ 557 \\ 792 \\ 24466 \\ 880 \\ 113 \\ 155 \\ 77 \\ 2244 \\ 466 \\ 880 \\ 113 \\ 115 \\ 111 $	$ \begin{smallmatrix} & & & & & & & & & & & & & & & & & & $	$ \begin{array}{c} {} {} {} {} {} {} {} {} {} {} {} {} {}$	5-5-5-5-5-5-7-7-991110022446688010221133555779911100224466880111355577991100224466880111355577999002244668811 	$\begin{array}{c} 0 \\ $	$ \begin{smallmatrix} \mathbf{c} \\ \mathbf{c}$	1 3 3 5 5 0 0 2 2 4 1 1 3 3 5 0 0 2 4 1 2 4 6 6 8 0 2 1 1 3 3 5 5 5 7 7 9 9 11 1 2 2 4 4 6 6 8 8 10 10 1 2 1 1 3 3 5 5 5 7 7 9 9 11 1 2 2 4 4 6 6 8 8 10 10 1 2 1 1 3 3 5 5 5 7 7 9 9 11 1 2 2 4 4 6 6 8 8 10 10 1 2 1 1 1 3 3 5 5 5 7 7 9 9 11 1 2 2 4 4 6 6 8 8 10 10 1 2 1 1 1 3 3 5 5 5 7 7 9 9 11 1 2 2 4 4 6 6 8 8 10 10 1 2 1 1 1 3 3 5 5 5 7 7 9 9 11 1 2 2 4 4 6 6 8 8 10 10 2 1 1 1 3 3 5 5 5 7 7 9 9 11 1 2 2 4 4 6 6 8 8 10 10 2 1 1 1 3 3 5 5 5 7 7 9 9 11 1 2 2 4 4 6 6 8 8 10 10 2 1 1 1 3 3 5 5 5 7 7 9 9 11 1 2 2 4 4 6 6 8 8 10 10 2 1 1 1 3 3 5 5 5 7 7 9 9 11 1 2 2 4 4 6 6 8 8 10 10 2 1 1 1 3 3 5 5 5 7 7 9 9 11 1 2 2 4 4 6 6 8 8 10 10 2 1 1 1 3 3 5 5 5 7 7 9 9 11 1 2 2 4 4 6 6 8 8 10 10 2 1 1 1 3 3 5 5 5 7 7 9 9 11 1 2 2 4 4 6 6 8 8 10 10 2 2 1 1 1 3 3 5 5 5 7 7 9 9 11 1 2 2 4 4 6 6 8 8 10 10 2 1 1 1 3 3 5 5 5 7 7 9 9 11 1 2 2 4 4 6 6 8 8 10 10 2 1 1 1 3 3 5 5 5 7 7 9 9 11 1 2 2 4 4 6 6 8 8 10 10 2 1 1 1 3 3 5 5 5 7 7 9 9 11 1 2 2 4 4 6 6 8 8 10 10 2 1 1 1 3 3 5 5 5 7 7 9 9 11 1 2 2 4 4 6 6 8 8 10 10 2 1 1 1 3 3 5 5 5 7 7 9 9 11 1 2 2 4 4 6 6 8 8 10 10 2 1 1 1 3 3 5 5 5 7 7 9 9 11 1 2 2 4 4 6 6 8 8 10 10 2 1 1 1 3 3 5 5 5 7 7 9 9 11 1 2 2 4 4 6 6 8 8 10 10 2 1 1 1 3 3 5 5 5 7 7 7 9 9 11 1 2 2 4 4 6 6 8 8 10 10 2 1 1 1 3 3 5 5 5 7 7 9 9 11 1 2 2 4 4 6 6 8 8 10 10 2 1 1 1 3 3 5 5 5 7 7 9 9 11 1 2 2 4 4 6 6 8 8 10 10 2 1 1 1 3 3 5 5 5 5 7 7 7 9 9 11 1 2 2 4 4 6 6 8 8 10 10 2 1 1 1 3 3 5 5 5 5 7 7 7 9 9 11 1 2 2 4 4 4 6 6 8 8 10 10 2 1 1 1 1 3 3 5 5 5 5 7 7 7 9 9 11 1 2 2 4 4 4 6 6 8 8 10 10 2 1 1 1 1 3 3 5 5 5 5 7 7 7 9 9 11 1 2 2 4 4 4 6 6 8 8 10 10 1 1 1 3 3 5 5 5 5 7 7 7 9 9 11 1 2 2 4 4 4 6 6 8 8 10 10 1 1 1 1 3 3 5 5 5 5 7 7 7 9 9 11 1 2 2 4 4 4 6 6 8 8 10 10 1 1 1 1 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5	$^\circ$ o 43.84 4 43.84 4 43.84 4 43.84 4 43.84 4 43.84 4 43.84 4 43.84 4 43.84 4 43.84 1 44.85	$^{\circ}$ c 4, 4, 7, 4, 5, 3, 30 12, 13, 5, 00, 01, 11, 12, 11, 14, 24, 03, 22, 14, 13, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24	$\begin{array}{c} \textbf{a} & \textbf{b} & \textbf{c} & \textbf{a} \\ \textbf{a} & \textbf{a} & \textbf{b} & \textbf{10} & \textbf{11} & \textbf{11} \\ \textbf{a} & \textbf{a} & \textbf{a} \\ \textbf{a} & \textbf{a} \\ \textbf{a} & \textbf{a} & \textbf{a} & \textbf{a} \\ \textbf{a} & \textbf{a} & \textbf{a} \\ \textbf{a} & \textbf{a} & \textbf{a} & \textbf{a} & \textbf{a} \\ \textbf{a} & \textbf{a} & \textbf{a} & \textbf{a} & \textbf{a} \\ \textbf{a} & \textbf{a} & \textbf{a} & \textbf{a} & \textbf{a} & \textbf{a} \\ \textbf{a} & \textbf{a} \\ \textbf{a} & \textbf{a} \\ \textbf{a} & \textbf{a} &$	$ \begin{array}{c} \circ \\ \circ $	c $35,746$ 7,576 18,765 18,765 18,765 11,836 11,836 11,8376 11,17576 11,17766 11	$\begin{array}{c} 4 & 6 & 6 & 8 \\ 4 & 4 & 4 \\ 4 & 4 \\ 5 & 5 \\ 5 & 5 \\ 5 & 5 \\ 7 & 7 \\ 9 \\ 9 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$		$\begin{array}{c} \mathbf{x}_{4} \\ \mathbf{x}_{5} \\ \mathbf{x}_{6} \\ \mathbf{x}_{7} \\ \mathbf{x}_{7} \\ \mathbf{x}_{6} \\ \mathbf{x}_{7} \\ \mathbf{x}_{7} \\ \mathbf{x}_{6} \\ \mathbf{x}_{7} \\ \mathbf{x}_{7} \\ \mathbf{x}_{1} \\ \mathbf{x}$	

Tabelle 5 (Fortsetzung)

h k	P	F	h k	FF	h k	F	F	h	k	Fa	Fe	h i	k	F	Fc	h	k	F,	F	h k		F.	Fc	_
15	5 11.80 1	12.30	-5 7	17.64 18.41	13 5	7.21	9.22	-5	3	2.13	8.59	-12	2	3.33	0.38	-5 3	1	17.31 1	9.58	0	5	6.33	9.82	
15	7 17.61 1	15.50	59	13.44 14.88	-13 5	12.02	12,96	5	5	16.75	16.59	12 4	4 2	26.44	27.33	55		1.42	1.77	0	2	6.20	2.02	
-16 0	18.19 1	16.93	-5 11	13.51 13.14	14 2	17.88	16.85	-2	27	3.67	7.50	12 (4 J 6	2.70	2.17	5 5	, '	1.42	5.89	1	1	8.39	10.84	
16	2 4.27	4.94	6 2	62.65 61.98	-14 2	16.54	18.97	-5	ż	2.13	1.58	12 8	8 1	15.93	17.84	-5	7	4.14	10.82	-1	1	17.05	21.91	
16	9.87 1	10.84	-6 2	56.60 52.07	14 4	3.00	2,99	5	9	17.68	19.27	13	1 1	12.33	13.83	5 9	2	1.42	1.04	1	3	8.39	8.37	
17 1	4.27	5.30	-6 4	1.98 4.43	14 0	16.75	14.75	-5	8	2.13	2.94	13	3 I 5	3 10	14.77	-5 5	; ;	4.20	39.45	-1) ち	8.39	15.11	
18 0	19.41 1	6.11	6 6	51.57 50.94	15 3	2.99	3.73	-6	ŏ	33.46	32.79	14	0	3.09	6.18	-6 5	2	2.47	5.69	-1	5	22.00	26.86	
18 2	4.27	1.13	-6 6	32.20 31.23	16 2	4.51	9.80	6	2	1.85	4.76	14	2	2.99	3.22	6 1		3.03	8.70	2	0	43.01	42.96	
18 /	13.08 1	1.81	68	1.85 5.76	17 1	4.68	8.44	-0	2	2.39	1.81	14	4	2.99	2.68	-0 4	5	2.42	2.41	-2	0	6.40	2.85	
3	= 5		6 10	20.76 20.27	18 2	4.89	8.00	-6	4	25.50	24.40	15	5	4.69	7.18	-6	6	2.42	6.54	-2	2	6.58	2.33	
0 2	36.14 3	5.61	-6 10	19.14 19.96	1	∞ 6		6	6	4.98	5.30	15	5	4.89	8.36	6	В	2.86	0.47	2	4	29.47	30.14	
04	17.86 1	5 52	7 1	21.62 20.95	0 0	33 01	35 0.9	-0	6	2.28	2.86	16	0 1	17.46	18.01	61	0	0.44	11.27	-2	6	6.40	6.00	
οē	1.99	2.37	7 3	15.47 15.44	0 2	1.42	1.65	-6	8	18.52	19.32	16	4 j	16.51	17.61	-7	1	6.36	11.23	-2	6	6.54	2,15	
0 10	1.99	4.63	-7 3	22.73 22.24	04	26.10	24.22	7	1	5.75	6.57	17	1	5.03	8.79	7	3	24.66	26.67	2	8	25.10	25.02	
11	58.81 5	9.69	75	18.09 14.43	0 0	17.21	16.80	-7	1	24.59	25.31		1 =	7		-7	3	15.52	30.55	-2	8	16.07	24.0)	
1 3	36.00 3	2.77	7 7	11.85 13.60	0 10	6.23	8.08	-7	3	17.62	19.56	0	2	41.78	40.39	-7	5	14.17	15.44	-3	î	6.84	13.55	
-1 3	15.84 1	6.96	-7 7	2.79 4.13	0 12	14.65	16.14	7	5	14.34	13.96	0	4	1.93	3.51	7	2	8.70	12.75	3	3	11.59	17.13	
-1 5	47.64 4	4.84	7 9	12.07 12.79	1 1	35.44	26.82	-7	5	29.61	29.58	0	6 3	22.43	23.73	-7	7	3.14	5.00	-3	3	9.87	22.08	
1 7	10.20 1	0.13	8 2	9.70 12.06	1 3	23.44	22.22	-7	2	26.44	22.97	0 1	0	13.72	16.69	8	2	33.01	33.97	3	7	10.31	17.27	
-1 7	23.31 2	2.29	-8 2	8.08 9.05	-1 3	18.06	18.63	7	9	10.25	10.47	1	1	7.64	6.30	-8	2	32.20	30.65	4	0	4.96	7.06	
1 9	20.54 1	9.67	84	2,22 2.10	1 5	26.27	25.15	-7	9	6.74	12.30	-1	1 :	23.84	21.60	8	4	2.39	0.70	-4	0	5.25	0.43	
1 11	3.02	5.34	8 6	8.18 9.65	-1 5	11.55	14.72	-8	ŏ	36.31	32.77	-1	3	29.57	29.76	6– 8	6	26.94	27.68	_4	2	5.12	1.67	
-1 11	11.95 1	3.84	-8 6	2.77 1.19	-1 7	2.56	0.64	8	2	8.55	9.54	1	5	1.56	0.54	-8	6	15.33	15.70	4	4	4.84	7.84	
_2 2	92.87 8	4.47	88	2.13 0.45	1 9	19.75	19.69	-8	2	2.72	3.69	-1	5	28.27	27.74	9	1	2.28	5.39	5	1	17 03	7.90	
2 4	1.68	1.21	8 10	3.07 0.18	1 11	8.06	11.06	-8	4	22.04	22.45	-1	5	7.38	12.70	-9	3	2.28	0.95	- 5	3	5.5	5 2.13	
-2 4	1.85	2.87	91	31.77 30.84	2 0	22,00	21.42	8	6	5.35	8.34	ī	9	1.56	0.41	-9	3	4.24	9.99	-5	3	5.1	2 10.77	
2 6	63.83 6	3.17	-9 1	15.33 14.46	-2 0	33.92	34.14	-8	6	2.70	1.47	-1	9	11.19	13.21	9	5	2.28	0.08	5	5	11.9	5 23.32	
2 8	6.04	9.54	-9 3	14.02 15.57	-2 2	1.74	1.96	-8	8	23.33	17.63	_2	2	28.07	25.14	-9	7	2,28	3.24	-9	,		, -,.,-	
-2 8	1.85	4.53	9 Ś	15.22 15.13	24	32.43	30.76	9	1	17.48	17.69	2	4	7.22	10.42	1Ó	2	23.75	27.07		1	= 9		
2 10	25.22 2	3.24	-9 5	15.19 12.72	-2 4	35.04	33.88	-9	1	2.84	0.98	-2	4	2.13	4.63	-10	2	3.10	3.58	0	2	9.8	117.15	
3 1	41.24 3	9.57	-9 7	10.91 12.27	-2 6	1.71	3.66	-9	3	2.84	2.16	-2	6	10.74	12.49	-10	4	2.99	4.31	-1	1	7.1	1 3.93	
-3 1	41.74 3	8.79	ģ ģ	4.24 9.43	28	11.65	14.01	9	5	10.40	11.84	2	8	2.73	0.34	10	6	13.58	15.96	1	3	7.1	1 19.69	
33	17.34 1	7.06	9 11	4.66 10.07	-2 8	18.86	19.77	-9	5	2.84	4.19	-2	8	2.13	1.28	-10	6	2.99	2.65	-1	3	7.1	1 7.55	
35	18.06 1	6.68	-10 2	36.01 32.09	-3 1	2.38 30.48	4.91	-9	÷	2.84	2.14	-21	10	4.55	9.24	-11	1	4.55	12.48	-1	2	22.0	4 22.29)
-3 5	43.88 4	2.69	10 4	2.46 4.72	3.3	13.25	13.70	ģ	9	11.80	13.44	3	1	33.51	33.25	11	3	14.62	17.31	-2	2	22.6	1 27.39	1
37	19.67 1	9.85	-10 4	2.84 4.92	-3 3	25.50	24.28	10	0	2.45	6.23	-3	1	4.65	7.47	-11	3	9.30	14.48	3	1	7.1	5 1.89	;
3 9	15.30 14	4.24	-10 6	17 31 16 42	_3 5	30 44	31.93	10	2	2.42	0 43	د	2	30,02	2.74 13 03	_11	5	11.8	5 14.18		-	7.1	1 0.57	7
-3 9	20.95 1	8.46	10 8	2,42 0.84	<u>3</u> 7	2.52	1.62	-10	2	3.03	1.61	3	5	36.84	34.86	11	ź	6.29	10.91	-3	5	10.6	57 15.69	ð
3 11	6.04 10	0.19	10 10	16.57 16.00	-3 7	24.89	23.51	10	4	2.42	7.08	-3	5	3.40	8,90	12	2	19.01	20.88		2	23.	18 25.45	5 0
-4 2	21.45 2.	9.14	_11 1	2.43 3.41	39	2.42	6.07 15 04	-10	4	11.45	12.89	3	7	9.20	13.19	-12	2	2 9	0.12	1	. 4	18.	33 16.7	ó
4 4	3.91	6.79	11 3	11.83 9.60	4 0	27.11	26.67	-10	ĕ	2.99	6,68	-)	9	11.70	16.32	-12	4	3.41	3 3.49		; 1	14.	99 17.2	2
-4 4	18.35 18	8.18	-11 3	4.12 9.33	-4 0	38.46	40.73	10	8	2.42	1.99	-3	9	2.70	1.56	12	6	19.1	3 18.23		5	5 19.	63 20.8	0
_4 0 _4 6	5.28	7.52	11 5	5.39 7.08	42	7.21	9.26	-10	8	11.76	13.87	4	2	42.81	41.61	-12	0 1	12.5	213.84		5 :	5 10.	21 10.4	2
4 8	2.52	1.30	11 7	2.42 7.31	4 4	30.75	28.62	-11	1	14.79	16.13	-4	4	1.95	1.60	-13	1	4.9	6 10.31			l ≈ 10		
-4 8	2.28 2	2.87	11 9	4.48 7.56	-4 4	24.89	23.96	11	3	6.66	8.09	-4	4	2.38	5.55	13	3	2.8	4 0.77		0 1) 12.	91 23.8	5
-4 10	2.42	4.81	12 2 -12 2	10.45 10.86	4 6	10.30	9,11	-11	5	7.89	11.83	4 _4	6 6	28.17	29.86	13	5	2.8	4 0.41		2	1 /. D 7.	11 10.1	ź
5 1	54.04 51	1.14	12 4	3.87 2.95	4 8	26.27	26.70	-11	5	19.97	20.03		8	1.85	1.85	14	4	3.2	1 0.12		2	2 7.	11 0.9	10
-5 1	24.18 23	3.44	-12 4	2.99 0.63	-4 8	25.46	23.50	11	7	3.16	4.23	-4	8	2.28	5.56	14	6	12.6	7 11.35		2	4 10.	82 12.3	1
-5 3	17.46 17	7.87	12 0	15.90 16.93	4 10	13.77	15.05	11	6	4.85	10.87	4 _4	10	12.44	15.12	15	3	4.6	6 10.02	2	ŝ	3 11	08 18.1	10
5 5	31.97 29	9.53	-13 1	9.30 11.37	5 1	23.01	21.14	12	ó	25.02	24.13	-1	1	1.51	7.37	16	2	4.8	1 9.56	, ,	4	0 24	85 27.4	1
-5 5	11.59 10	0.31	13 3	14.29 12.68	-5 1	2.18	6.82	-12	0	18.33	17.57	-5	1	12.30	13.95		1	= 8			4	2 7	47 22	ינ 7
, ,				14.73 17.47		41.77	10.02	1 ÷	4	2.02	7.01		•	1.42	: U.4)						-			٠

signifikant verkürzt. Für die N-N-Bindung hat sich nun ein Abstand von 1,246 Å ergeben, der zwar gerade noch innerhalb der Fehlergrenzen der zweidimensionalen Analyse liegt, aber gegenüber einer N-N-Doppelbindung nicht mehr aufgeweitet ist. Nun ist zwar bekannt, dass bei mesomeren Zuständen die Aufweitung der Doppelbindung immer geringer ist, als die Verkürzung der Einfachbindung; trotzdem sollte natürlich bei der Genauigkeit der vorliegenden Strukturbestimmung der Aufweitungseffekt messbar sein. Eine Durchsicht der Literaturwerte der Einfachbzw. Doppelbindung zeigt, dass die N-O-Einfachbindung in einer Reihe neuer und sehr genauer Strukturanalysen gut belegt ist (Merrit & Lanterman, 1952; Hall & Llewellyn, 1956; Caron, Palenik, Goldish & Donohue, 1964) während für die N-N-Doppelbindung nur ältere Elektronenbeugungsuntersuchungen vorliegen (vgl. z. B. Bauer, 1947). Es scheint daher nicht ganz ausgeschlossen, dass eine, nicht durch Mesomerie verfälschte N-N-Doppelbindung tatsächlich etwas kürzer ist, als die Literaturwerte angeben. Immerhin weist die eindeutig belegte Verkürzung der N-O-Bindung weiterhin auf eine mesomere Struktur des Anions hin, die übrigens auch mit dem chemischen Verhalten im Einklang ist. Die Länge der N-C-Bindung entspricht einer normalen N-C-Einfachbindung (Nishikawa, Itoh & Skimoda, 1955).

Aufstellung der Verwendeten Rechenprogramme

1. Lorentz-Polarisationsfaktor Eigenes Fortran-Programm für IBM 7090.

2. Fouriersynthese

Von uns stark geändertes Programm von S. Block und J. R. Holden, U.S. National Bureau of Standards, mit Zeichenprogrammen von K. Anzenhofer, München.

3. Kleinste Quadrate

Von uns zur unmittelbar anschliessenden Berechnung einer (F_o) - oder $(F_o - F_c)$ -Fouriersynthese geändertes Programm von W. R. Busing und H. A. Levy, Oak Ridge.

4. Atomabstände usw.

Von uns erweitertes Programm von W. R. Busing und H. A. Levy, Oak Ridge.

Für die Unterstützung dieser Arbeit sind wir der Deutschen Forschungsgemeinschaft, dem Fonds der Chemischen Industrie und der Badischen Anilin- und Sodafabrik, Ludwigshafen, zu besonderem Dank verpflichtet.

Literatur

- Müller, E., Hoppe, W., HAGENMAIER, H., HAISS, H., HUBER, R., RUNDEL, W. & SUHR, H. (1963). *Chem. Ber.* 96, 1712.
- COCHRAN, W. (1951). Acta Cryst. 4, 408.
- CRUICKSHANK, D. W. J. (1956). Acta Cryst. 9, 747.
- MERRIT, L. L. & LANTERMAN, E. (1952). Acta Cryst. 5, 811.
- HALL, D. & LLEWELLYN, F. J. (1956). Acta Cryst. 9, 108.
- CARON, A., PALENIK, G. J., GOLDISH, E. & DONOHUE, J. (1964). Acta Cryst. 17, 102.
- BAUER, S. H. (1947). J. Amer. Chem. Soc. 69, 3104.
- NISHIKAWA, T., ITOH, T. & SHIMODA, K. (1955). J. Chem. Phys. 23, 1735.

Acta Cryst. (1965). 18, 473

The Correlation Method. A Systematic Use of the Interrelationship between Sign Relations

By A. de Vries

Laboratorium voor Kristalchemie der Rijksuniversiteit, Utrecht, The Netherlands

(Received 13 April 1964)

The method discussed is based on the interrelationship between sign relations, and aims at obtaining a closer estimate of which sign relations are most likely to be correct. This method was developed especially for work with projection data in cases where the number of strong reflexions is relatively small. An example of the application of the method is given.

1. Introduction and definitions

The correlation method was developed in the course of the crystal structure determination of L-asparagine monohydrate, where only the projections were centrosymmetric and the projection data contained a relatively small number of strong reflexions. Although the method presents its greatest advantages under these circumstances it may be quite useful in other cases as well.

The method may be regarded either as an extension of the coincidence method or as an extension of the use of relationships between sign relations, as described by Woolfson (1961, p. 80). It is treated here as an extension of the coincidence method.

The definitions of some of the symbols used are:

- s(hkl) The sign of the structure factor of the reflexion hkl.
- S_n The sign of sign relation number *n*, written in the form $s(hkl) \times s(h'k'l') \times s(h+h', k+k', l+l')$ $= S_n.$
- P_+ The probability that a sign relation is correct, calculated from the U values of the reflexions

in that sign relation (see *e.g.* Woolfson, 1961, p. 50).

$$P_{-} = 1 - P_{+}.$$

 P_+^* The probability that a sign relation is correct, including the influence of the relations with other sign relations.

$$P_{-}^{*} = 1 - P_{+}^{*}$$

2. Coincidences of a different kind

A coincidence of the usual type (we shall call this a coincidence of the first kind) is formed by a pair of sign relations $s(hkl) \times s(h'k'l') \times s(h+h', k+k', l+l') \approx +$ that have two structure factors in common; such a pair indicates that the remaining two structure factors have probably the same sign (this will be called the *indication* from the coincidence). For instance, the sign relations

 $s(0, 5, 6) \times s(0, 2, 0) \times s(0, 7, 6) \approx +$ $s(0, 2, 0) \times s(0, 7, 6) \times s(0, 9, 6) \approx +$

form a coincidence, the indication being

8

$$s(0, 5, 6) \approx s(0, 9, 6)$$
.